This paper reports on the recycling of expanded polystyrene (EPS) waste to be repurposed as EPS nanofibrous mats for air filtration applications. The EPS nanofibrous mats were prepared via electrospinning technique. The EPS solutions for producing the mats were made by dissolving the EPS waste in dimethylformamide (DMF) and d-limonene solvents. The mixing ratio of DMF and d-limonene solvents were varied to obtain EPS solutions with different surface tension and viscosity. As a result, different fiber morphology (smooth fiber, wrinkled fiber, and beaded fiber) and diameter ranging from 314 nm to 3506 nm were obtained. The synthesized EPS nanofibrous mats were characterized by scanning electron microscope, Fourier-transform infrared spectroscopy, x-ray diffraction spectroscopy, differential scanning calorimetry, mechanical strength, porosity, and water contact angle measurement apparatus. The mechanical strength measurement exhibited that the beaded fiber had the highest tensile strength and the lowest elasticity compared to wrinkled and smooth fiber. The water contact angle measurement showed that the EPS nanofibrous mats were classified as ultra-hydrophobic, which was a good criterion for air filter media. Some filtration parameters of the EPS nanofibrous mats were measured, including particle collecting efficiency, pressured drop, and quality factor. The particle collecting efficiency of each EPS nanofibrous mats was measured using monodisperse polystyrene latex (PSL) particles and PM 2.5 from burning incense as the test particles. The EPS nanofibrous mats had a high collecting efficiency (up to 99.99%) and had a low pressure drop (below 70 Pa) for the face velocity of 5.4 cm s −1 . The quality factor of the EPS nanofibrous mats reached 0.10 for PSL filtration and 0.16 for PM 2.5 filtration. Overall, the EPS nanofibrous mats with controlled morphology were suitable to be used as air filtration media with high mechanical strength, ultrahydrophobic surface, and high quality factor.