Particle Swarm Optimization-Based Model Abstraction and Explanation Generation for a Recurrent Neural Network
Yang Liu,
Huadong Wang,
Yan Ma
Abstract:In text classifier models, the complexity of recurrent neural networks (RNNs) is very high because of the vast state space and uncertainty of transitions, which makes the RNN classifier’s explainability insufficient. It is almost impossible to explain the large-scale RNN directly. A feasible method is to generalize the rules undermining it, that is, model abstraction. To deal with the low efficiency and excessive information loss in existing model abstraction for RNNs, this work proposes a PSO (Particle Swarm … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.