T he uni que features of the families of bri ght spinning spatiotemp oral solitons (doughnuts or vortex light bullets ) in disp ersive quadratic media, includi ng their stabili ty , are presented. Both analyti cal results, obtained by means of a simple variational approximation, and numerical simulations are presented and compared. I t w as found that though the variational approximation is not very accurate, it correctly describ es the qualitati ve features of the spinni ng spatiotemp ora l solitons. T he spinni ng light bullets are subj ect to a strong azimuthal instabil ity , which leads to the brea k-up of the spinni ng soliton into a set of fragments, each b eing a s t a b l e nonspinn in g spatiotemp oral soliton.PAC S numb ers: 42.65.T g, 42. 65. Sf 1. I n t r o d u ct io n Sol i ton s i n opti cal m edi a wi t h qua dra ti c nonl ineari ti esexhi bi t uni que dyna mi cal b ehavi ors a nd ha ve a p otenti al for appl i cati ons to pho to ni c devi ces [1{ 20]. One of the funda menta ll y i m po rta n t pro p erti es i s the fact tha t , unl ike the Kerr no nl i neari ty [21], the qua dra ti c nonl i neari ty do esno t l ead to wa ve col l apsei n any physi cal di mension [3 ], and thus i t op ens a way to generate sta bl e spati otem p ora l sol i tons (S TS), or \ l i ght bul l ets" (L B) [21], i .e., ful l y l ocal i zed spati otem p ora l ob j ects tha t resul t fro m the simul taneous bal ance of di˜ra cti on and di spersion by no nl i near pha se-m odul ati on. STS i n vari ous typ es of no nl i near opti cal envi ro nm ents ha ve attra cted a great deal of i nterest [22{ 42]. However, col l apse do es not ta ke pl ace, m aki ng sta bl e LB possibl e, i n medi a wi th satura bl e [25,26,31], qua dra ti c [35,39], and cubi c-qui nti c [43,44] nonl ineari ti es, i n o˜-resona nce two -level system s [41] as wel l as i n self -i nduced-tra nsparency m edi a [40]. R ecentl y i n Ref.[41] the pro pagati on of 2D f emto second opti cal pul ses i n an o˜-resona nce tw o-level m edium was addressed. W i thi n the qua siadi aba ti ng fol l owi ng appro ach, the evol uti on of the pul se i s governed by a general i zed Ka dom tsev{ Petvi ashvil i equati on wi th coupl i ng (4 7)