The capabilities of different Earth Observation multispectral satellites are employed for detecting and tracking of desert dust coming from North Africa toward the Northern Italy area and for evaluating the impact of Saharan dust deposition in inland waters, such as those of Lake Garda. Absorbing and scattering spectral optical properties of desert aerosol in the atmospheric windows in the ultraviolet, visible-near-infrared, and infrared spectral ranges are exploited in the dust retrieval performed by OMI/Aura, MODIS/Terra-Aqua, and SEVIRI/MSG satellite sensors. Therefore, the direct link between dust deposition and increase in phytoplankton abundance has been assessed retrieving MERIS-based chlorophyll-a (chl-a) concentration for the desert dust events. Estimates of the increased chl-a in the lake have been derived with values in concentration from 30% to 170%. AERONET sun-photometer measurements, gravimetric particulate matter samplings, in situ chl-a concentration and surface temperature are employed to select events and assess the presence of desert dust and recognize a corresponding increase of the phytoplankton abundance in the analyzed inland waters. The improved observational features that will be provided by the next European Sentinels missions, namely Sentinel-2, 3, 4, 5P, together with MTG-I (Imager) and MTG-S (Sounder) will allow better monitoring atmospheric constituents and studying the environmental impacts of desert dust transport. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.