Ethanolamines have traditionally been used for capturing CO 2 in a postcombustion carbon capture column. However, the use of ethanolamines, due to their high volatility and solvent losses, is not sustainable. One of the ways in which the solvent loss occurs is in the form of aerosols from the top of the column. The mechanism, rate of nucleation, growth rate, and interaction leading to the formation of aerosols, although essential for better process design, remain obscure. Using molecular dynamics simulations, we herein, analyze the formation of aerosols in columns based on aqueous monoethanolamine (MEA), aqueous methyldiethanolamine (MDEA), and their mixtures, using reference, pilot-scale, and industrial-scale data. In particular, the nucleation rate and cluster growth analyses were performed for five different cases. The results show that CO 2 concentration had a strong influence on the rate of aerosol formation, a factor that can be easily controlled for better process design. Moreover, the interactions within the formed aerosols were mainly dominated by CO 2 −water interactions. Taken together, our results and analysis contribute toward a better understanding of aerosol formation and present some practical value, namely, calculated nucleation rates and particulate growth rates can be used in process simulators to account for solvent losses, factors that were identified as contributing to formation of particulate matter can be controlled and adjusted in design process simulations and in real plants, providing better performance of postcombustion carbon capture columns and thus suggest ways to prevent solvent loss.