In this paper, we investigate a specific structure within the theoretical framework of Partition Markov Models (PMM) [see García Jesús and González-López, Entropy 19, 160 (2017)]. The structure of interest lies in the formulation of the underlying partition, which defines the process, in which, in addition to a finite memory o associated with the process, a parameter G is introduced, allowing an extra dependence on the past complementing the dependence given by the usual memory o. We show, by simulations, how algorithms designed for the classic version of the PMM can have difficulties in recovering the structure investigated here. This specific structure is efficient for modeling a complete genome sequence, coming from the newly decoded Coronavirus Covid-19 in humans [see Wu et al., Nature 579, 265–269 (2020)]. The sequence profile is represented by 13 units (parts of the state space’s partition), for each of the 13 units, their respective transition probabilities are computed for any element of the genetic alphabet. Also, the structure proposed here allows us to develop a comparison study with other genomic sequences of Coronavirus, collected in the last 25 years, through which we conclude that Covid-19 is shown next to SARS-like Coronaviruses (SL-CoVs) from bats specimens in Zhoushan [see Hu et al., Emerg Microb Infect 7, 1–10 (2018)].