2022
DOI: 10.48550/arxiv.2208.06932
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Partition Rank and Partition Lattices

Abstract: We introduce a universal approach for applying the partition rank method, an extension of Tao's slice rank polynomial method, to tensors that are not diagonal. This is accomplished by generalizing Naslund's distinctness indicator to what we call a partition indicator. The advantages of partition indicators are two-fold: they diagonalize tensors that are constant when specified sets of variables are equal, and even in more general settings they can often substantially reduce the partition rank as compared to wh… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?