2022
DOI: 10.48550/arxiv.2210.16892
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Partitioned Gradient Matching-based Data Subset Selection for Compute-Efficient Robust ASR Training

Abstract: Training state-of-the-art ASR systems such as RNN-T often have a high associated financial and environmental cost. Training with a subset of training data could mitigate this problem if the subset selected could achieve performance on-par with training with the entire dataset. Although there are many data subset selection (DSS) algorithms, direct application to the RNN-T is difficult, especially the DSS algorithms that are adaptive and use learning dynamics such as gradients, since RNN-T tends to have gradient… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?