Clustering ensemble can overcome the instability of clustering and improve clustering performance. With the rapid development of clustering ensemble, we find that not all clustering solutions are effective in their final result. In this paper, we focus on selection strategy in selective clustering ensemble. We propose a multiple clustering and selecting approach (MCAS), which is based on different original clustering solutions. Furthermore, we present two combining strategies, direct combining and clustering combining, to combine the solutions selected by MCAS. These combining strategies combine results of MCAS and get a more refined subset of solutions, compared with traditional selective clustering ensemble algorithms and single clustering and selecting algorithms. Experimental results on UCI machine learning datasets show that the algorithm that uses multiple clustering and selecting algorithms with combining strategy performs well on most datasets and outperforms most selective clustering ensemble algorithms.
KeywordsSelective clustering ensemble • Clustering solution • Multiple clustering and selecting algorithms • Combining strategy
IntroductionClustering is one of the most important tools in data mining. The major goal of clustering is to seek a grouping Communicated by A. Di Nola.