This work proposes a novel methodology for the complete characterization of fiber reinforced concrete (FRC). The method includes bending tests of prismatic notched specimens, based on the Standards for FRC, tensile and pure shear tests. The values adopted by the standards for designing FRC are the obtained from bending tests, typically fR3, even for shear and pure tension loading. This paper shows that the remaining strength of FRC, supplied by the fibers, depends on the type of loading. In the case of shear and tensile loading the prescriptions of the standards may be unsafe. In this work, the remaining halves of specimens subjected to bending test are prepared and used for shear and tension tests. This means significant savings in specimen preparation and a greater amount of information for structural use of FRC. The results provide relevant information for the design of structural elements of FRC compared with the only use of data supplied by bending tests. In the case of tensile tests, fLOP values are 42% of the strength of the equivalent bending results, being 31% the average reduction in remaining resistance in comparison with the bending test. Pure shear tests showed, for 0.5 mm shear displacement, that the shear resistance is greater than 160% of that expressed according to bending tests. In addition, a video-extensometry system was used to analyze the crack generation and cracking patterns. The video-extensometry applied to shear tests allowed the assessment of the sliding values and crack opening values at the crack discontinuity. These values may be quite relevant for the study of the FRC behavior when subjected to shear according to the shear-friction model theories.