Effects of solid feed (SF) level and roughage-to-concentrate (R:C) ratio on ruminal drinking and passage kinetics of milk replacer, concentrate, and roughage were studied in veal calves. In total, 80 male Holstein-Friesian calves (45±0.2kg of body weight) were divided over 16 pens (5 calves per pen). Pens were randomly assigned to either a low (LSF) or a high (HSF) SF level and to 1 of 2 R:C ratios: 20:80 or 50:50 on a dry matter (DM) basis. Roughage was composed of 50% corn silage and 50% chopped wheat straw on a DM basis. At 27 wk of age, measurements were conducted in 32 calves. During the measurement period, SF intake was 1.2kg of DM/d for LSF and 3.0kg of DM/d for HSF, and milk replacer intake averaged 2.3kg of DM/d for LSF and 1.3kg of DM/d for HSF. To estimate passage kinetics of milk replacer, concentrate, and straw, indigestible markers (CoEDTA, hexatriacontane C36, Cr-neutral detergent fiber) were supplied with the feed as a single dose 4, 24, and 48h before assessment of their quantitative recovery in the rumen, abomasum, small intestine, and large intestine. Rumen Co recovery averaged 20% of the last milk replacer meal. Recoveries of Co remained largely unaffected by SF level and R:C ratio. The R:C ratio did not affect rumen recovery of C36 or Cr. Rumen fractional passage rate of concentrate was estimated from recovery of C36 in the rumen and increased from 3.3%/h for LSF to 4.9%/h for HSF. Rumen fractional passage rate of straw was estimated from Cr recovery in the rumen and increased from 1.3%/h for LSF to 1.7%/h for HSF. An increase in SF level was accompanied by an increase in fresh and dry rumen contents. In HSF calves, pH decreased and VFA concentrations increased with increasing concentrate proportion, indicating increased fermentation. The ratio between Cr and C36 was similar in the small and large intestine, indicating that passage of concentrate and straw is mainly determined by rumen and abomasum emptying. In conclusion, increasing SF level introduces large variation in passage kinetics of dietary components, predominantly in the rumen compartment. The SF level, rather than the R:C ratio, influences rumen recovery of concentrate and roughage. Our data provide insight in passage kinetics of milk (Co representing the milk replacer) and SF (Cr and C36 representing roughage and concentrate, respectively) and may contribute to the development of feed evaluation models for calves fed milk and SF.