The paper addresses relations between the characteristics of body composition in international sprint swimmers and sprint performance. The research included 82 swimmers of international level (N = 46 male and N = 36 female athletes) from 8 countries. We measured body composition using multifrequency bioelectrical impedance methods with “InBody 720” device. In the case of male swimmers, it was established that the most important statistically significant correlation with sprint performance is seen in variables, which define the quantitative relationship between their fat and muscle with the contractile potential of the body (Protein-Fat Index, r = 0.392, p = 0.007; Index of Body Composition, r = 0.392, p = 0.007; Percent of Skeletal Muscle Mass, r = 0.392, p = 0.016). In the case of female athletes, statistically significant relations with sprint performance were established for variables that define the absolute and relative amount of a contractile component in the body, but also with the variables that define the structure of body fat characteristics (Percent of Skeletal Muscle Mass, r = 0.732, p = 0.000; Free Fat Mass, r = 0.702, p = 0.000; Fat Mass Index, r = −0.642, p = 0.000; Percent of Body Fat, r = −0.621, p = 0.000). Using Multiple Regression Analysis, we managed to predict swimming performance of sprint swimmers with the help of body composition variables, where the models defined explained 35.1 and 75.1% of the mutual variability of performance, for male and female swimmers, respectively. This data clearly demonstrate the importance of body composition control in sprint swimmers as a valuable method for monitoring the efficiency of body adaptation to training process in order to optimize competitive performance.