Parathyroid hormone-related protein (PTHrP) plays a vital role in the embryonic development of the skeleton and other tissues. When it is produced in excess by cancers it can cause hypercalcemia, and its local production by breast cancer cells has been implicated in the pathogenesis of bone metastasis formation in that disease. Antibodies have been developed that neutralize the action of PTHrP through its receptor, parathyroid hormone receptor 1, without influencing parathyroid hormone action through the same receptor. Such neutralizing antibodies against PTHrP are therapeutically effective in animal models of the humoral hypercalcemia of malignancy and of bone metastasis formation. We have determined the crystal structure of the complex between PTHrP (residues 1-108) and a neutralizing monoclonal anti-PTHrP antibody that reveals the only point of contact is an âŁ-helical structure extending from residues 14 -29. Another striking feature is that the same residues that interact with the antibody also interact with parathyroid hormone receptor 1, showing that the antibody and the receptor binding site on the hormone closely overlap. The structure explains how the antibody discriminates between the two hormones and provides information that could be used in the development of novel agonists and antagonists of their common receptor.
The discovery of parathyroid hormone (PTH)6 -related protein (PTHrP) as the cause of hypercalcemia in many patients with cancer provided new insights into the pathogenesis of the skeletal complications of malignancy (1). It revealed PTHrP as a previously unrecognized hormone, related in evolution to the calcium-regulating PTH, but important in the pathogenesis of the humoral hypercalcemia of malignancy, a syndrome in which hypercalcemia occurs without evident bone metastases. Whereas PTH consists of 84 amino acids, human PTHrP has three alternative splice products of 139, 141, and 173 residues. Apart from 8 of the first 13 residues of PTH and PTHrP being identical, there is no significant identity between these peptides (2). PTHrP actively promotes bone resorption, doing so in a manner identical to that of PTH by acting upon the receptor (PTH1R) it shares with PTH. The PTH1R is located on cells of the osteoblast lineage, which program the formation and activation of osteoclasts, and on cells of the kidney tubule, through which both PTHrP and PTH promote cyclic AMP and phosphorus excretion but reduce calcium excretion. Other actions of PTHrP that reflect those of PTH include the ability to relax vascular and other smooth muscle. This response may reflect a physiological function of PTHrP rather than of PTH and is consistent with PTHrP production and local action on smooth muscles at various sites (3).The first 34 amino acids of each hormone contain the full biological activities of both PTH and of PTHrP to activate the PTH1R (4). The sequences of PTHrP and PTH between residues 14 and 34 are interesting in that, although they are not homologous, nevertheless they appear to be critical for b...