(Hydrological Sciences Bra nch , NASA /G oddard Space Flight Cente r , Gree nbe lt , M a ryl and 20771, U .S .A .)ABSTRACT. The snow-pack on the Arctic Coastal Plain of Alaska has a well-developed depth-hoar layer which forms each year at the base of the snow-pack due to upward vapor transfer resulting from a temperature gradient in the snow-pack. The thickness of the depth-hoar layer tends to increase inland where greater temperature extremes (in particular, lower minimum temperatures) permit larger temperature gradients to develop within the snow-pack . Brightness temperature (TB) data were analyzed from October through May for four winters using the 37 GHz horizontally polarized Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR). By mid-winter each year, a decrease in TB of approximately 20K was found between coastal and inland sites on the Arctic Coastal Plain of Alaska. Modeling has indicated that a thicker depth-hoar layer in the inland sites could be responsible for the lower T BS ' The large grain-sizes of the depth-hoar crystals scatter the up welling radiation moreso than do smaller crystals, and greater scattering lowers the microwave TB' Using a two-layered radiative transfer model, the crystal diameter in the top layer was assumed to be 0.50 mm. The crystals in the depth-hoar layer may be 5-10 mm in diameter but the effective crystal diameter used in the radiative-transfer model is 1.40 mm. The crystal size used in the model had to be adjusted downward, relative to the actual crystal size, because the hollow, cup-shaped depth-hoar crystals are not as effective at scattering the microwave radiation as are spherical crystals that are assumed in the model. In the model, when the thickness of the depth-hoar layer was increased from 5 cm to 10 cm, a 21K decrease in TB resulted. This is comparable to the decrease in TB observed from coastal to inland sites in the study area.