This paper addresses the problem of clutter cancellation for ground moving target indication (GMTI) in multi-channel passive radar on mobile platforms. Specifically, the advantages of a space-time adaptive processing (STAP) approach are presented, compared to a displaced phase centre antenna (DPCA) approach, in the case of an angle-dependent imbalance affecting the receiving channels. The schemes are tested against simulated clutter data. Finally, a space-time GLRT detection scheme is proposed, where steering vector is not specified in the spatial domain, resulting in a non-coherent integration of target echoes across the receiving channels. Such solution offers comparable clutter cancellation capability and is more robust against significant calibration errors compared to a conventional GLRT detector, which suffers from spatial steering vector mismatches.