2019
DOI: 10.3390/s19204522
|View full text |Cite
|
Sign up to set email alerts
|

Passive Source Localization Using Compressive Sensing

Abstract: This paper presents an underwater passive source localization method by forming an underdetermined linear inversion problem. The signal strength on a specified grid is evaluated using sparse reconstruction algorithms by exploiting the spatial sparsity of the source signals. Our strategy leads to a high ratio of measurements to sparsity (RMS), an increase in the peak sharpness with a low side lobe level, and minimization of the dimensionality of the problem due to the formulation of the system equation of the m… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(5 citation statements)
references
References 54 publications
0
4
0
1
Order By: Relevance
“…Generally, the GPS traces the longitude and longitude with the locality of the bus system. This information is stored as data on the IoT open platform [4][5][6].…”
Section: Literature Reviewmentioning
confidence: 99%
“…Generally, the GPS traces the longitude and longitude with the locality of the bus system. This information is stored as data on the IoT open platform [4][5][6].…”
Section: Literature Reviewmentioning
confidence: 99%
“…En la mayoría de casos prácticos de los sistemas de localización, el número de fuentes es mucho menor al de posiciones desde las cuales puede provenir una señal; es decir, al discretizar la región de interés, la cantidad de celdas que efectivamente contienen fuentes transmisoras es mucho menor al tamaño de la grilla como tal, razón por la cual es posible plantear el problema de localización como de reconstrucción dispersa (Zhao, Irshad, Shi y Xu, 2019). Además, basados en la teoría de sensado comprimido desarrollada por (Candès y Romberg, 2006, Candès, Romberg y Tao, 2006a, Candès, Romberg y Tao, 2006b, Donoho, 2006, la señal recibida y r [n] se puede aproximar correctamente como una combinación lineal de algunos pocos elementos de una base de representación conocida o diccionario (Marín-Alfonso, Betancur-Agudelo y Alguello-Fuentes, 2017).…”
Section: Representación Dispersa Y Sensado Comprimidounclassified
“…CS is widely used in diverse fields, e.g., biomedical applications, communication systems, and pattern recognition, as well as electrical PQ estimation [15,16]. Various new techniques for identifying and estimating harmonic sources in electricity supply systems have been presented in the literature [17][18][19][20][21][22][23][24][25][26][27][28]. The papers [17][18][19][20][21] concern the distributed monitoring of harmonic and interharmonic pollution in electrical power delivery systems.…”
Section: Harmonic Order Harmonic Contents Inmentioning
confidence: 99%
“…In order to reduce implementation costs, the authors propose a distributed architecture, based on cost-effective nodes that use the CS strategy. Some papers [22][23][24][25][26][27][28] consider the different methods of compressive sampling and innovative CS algorithms for reconstruction of the PQ interference signal.…”
Section: Harmonic Order Harmonic Contents Inmentioning
confidence: 99%