In order to evaluate the level of sustainability of an integrated waste management system (IWMS), it is necessary to analyze the impact criteria. Therefore, the purpose of this study is to provide a model for IWMS optimization with the two goals of minimizing the cost and the emission of greenhouse gases of the entire system. Environmental and health problems caused by the lack of proper waste management include the increase in disease, increase in stray animals, pollution of air, water, land, etc. Therefore, it is very important to identify the indicators and improve the efficiency of the waste management system. In the present research, with descriptive-analytical approach, it has been tried to clarify and evaluate the effective indicators in two dimensions of production-segregation and collection-transportation, and find ways to improve the efficiency of the system. In this article, five waste management systems including, incineration, landfill without gas extraction system, plasma incineration, recycling and aerobic decomposition are introduced and their performance in energy production and emission reduction are compared. The results of the evaluation of the basic waste management system (b) show that the amount of pollution is equivalent to 850 kg CO2 per ton of waste. While the amount of emission in the fifth comprehensive management system is reduced to 450 kg CO2 per ton of waste. According to the results obtained in this study, in all the management systems presented, the process of burying waste in sanitary landfills has the greatest effect in increasing pollution. This means that the pollution caused by burying the waste in the sanitary landfill will be reduced with the construction of the gas extraction system and the plasma method and use in electricity production. Despite the increase in initial costs, using the right technology and using the right waste system based on the type of waste and waste recycling has an effect on the efficiency of the system.