Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Rainfall over mainland Southeast Asia experiences variability on seasonal to decadal timescales in response to a multitude of climate phenomena. Historical records and paleoclimate archives that span the last millennium reveal extreme multi-year rainfall variations that significantly affected the societies of mainland Southeast Asia. Here we utilize the Community Earth System Model Last Millennium Ensemble (CESM-LME) to quantify the contributions of internal and external drivers to decadal-scale rainfall extremes in the Southeast Asia region. We find that internal variability was dominant in driving both Southeast Asian drought and pluvial extremes on decadal timescales although external forcing impacts are also detectable. Specifically, rainfall extremes are more sensitive to Pacific Ocean internal variability than the state of the Indian Ocean. This discrepancy is greater for droughts than pluvials which we suggest is attributable to external forcing impacts that counteract the forced Indian Ocean teleconnections to Southeast Asia. Volcanic aerosols, the most effective radiative forcing during the last millennium, contributed to both the Ming Dynasty Drought (1637–1643) and the Strange Parallels Drought (1756–1768). From the Medieval Climate Anomaly to the Little Ice Age, we observe a shift in Indo-Pacific teleconnection strength to Southeast Asia consistent with enhanced volcanism during the latter interval. This work not only highlights asymmetries in the drivers of rainfall extremes but also presents a framework for quantifying multivariate drivers of decadal-scale variability and hydroclimatic extremes.
Rainfall over mainland Southeast Asia experiences variability on seasonal to decadal timescales in response to a multitude of climate phenomena. Historical records and paleoclimate archives that span the last millennium reveal extreme multi-year rainfall variations that significantly affected the societies of mainland Southeast Asia. Here we utilize the Community Earth System Model Last Millennium Ensemble (CESM-LME) to quantify the contributions of internal and external drivers to decadal-scale rainfall extremes in the Southeast Asia region. We find that internal variability was dominant in driving both Southeast Asian drought and pluvial extremes on decadal timescales although external forcing impacts are also detectable. Specifically, rainfall extremes are more sensitive to Pacific Ocean internal variability than the state of the Indian Ocean. This discrepancy is greater for droughts than pluvials which we suggest is attributable to external forcing impacts that counteract the forced Indian Ocean teleconnections to Southeast Asia. Volcanic aerosols, the most effective radiative forcing during the last millennium, contributed to both the Ming Dynasty Drought (1637–1643) and the Strange Parallels Drought (1756–1768). From the Medieval Climate Anomaly to the Little Ice Age, we observe a shift in Indo-Pacific teleconnection strength to Southeast Asia consistent with enhanced volcanism during the latter interval. This work not only highlights asymmetries in the drivers of rainfall extremes but also presents a framework for quantifying multivariate drivers of decadal-scale variability and hydroclimatic extremes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.