This paper introduces the Time Series Simulation for Benchmarking of Reconstruction Techniques (TISSBERT) dataset, intended to provide a benchmark for the validation and comparison of time series reconstruction methods. Such methods are routinely used to estimate vegetation characteristics from optical remotely sensed data, where the presence of clouds decreases the usefulness of the data. As for their validation, these methods have been compared with previously published ones, although with different approaches, which sometimes lead to contradictory results. We designed the TISSBERT dataset to be generic so that it could simulate realistic reference and cloud-contaminated time series at global scale. To that end, we estimated both cloud-free and cloud-contaminated Normalized Difference Vegetation Index (NDVI) statistics for randomly selected control points and each day of the year from the Long Term Data Record Version 4 (LTDR-V4) dataset by assuming different statistical distributions. The best approach was then applied to the whole dataset, and validity of the results were estimated through the Kolmogorov-Smirnov statistic. The dataset elaboration is described thoroughly along with how to use it. The advantages and drawbacks of this dataset are then discussed, which emphasize the realistic simulation of the cloud-contaminated and reference time series. This dataset can be obtained from the authors upon demand. It will be used in a next paper to compare widely used NDVI time series reconstruction methods.Key words: NDVI, gap-filling, reconstruction, dataset, comparison.TISSBERT: una referencia para la validaci贸n y la comparaci贸n de m茅todos para la reconstrucci贸n de series temporales de NDVI Resumen: En este trabajo se presenta la base de datos titulada Time Series Simulation for Benchmarking of Reconstruction Techniques (TISSBERT) con el prop贸sito de ofrecer una herramienta para la validaci贸n y la comparaci贸n de m茅todos para la reconstrucci贸n de series temporales. Tales m茅todos se usan de manera rutinaria para la estimaci贸n de caracter铆sticas de la vegetaci贸n a partir de datos obtenidos por teledetecci贸n 贸ptica, donde la presencia de nubes disminuye su utilidad. En cuanto a su validaci贸n, estos m茅todos se han comparado con otros publicados anteriormente, aunque desde perspectivas diferentes, lo cual conduce a resultados contradictorios. La base de datos TISSBERT se ha dise帽ado como una herramienta gen茅rica para una simulaci贸n realista a escala global de series temporales de referencia o contaminadas por nubes. Para ello, se estimaron estad铆sticas de Normalized Difference Vegetation Index (NDVI) con y sin contaminaci贸n de nubes para unos p铆xeles de control seleccionados de manera aleatoria, y para cada d铆a del a帽o, usando la base de datos Long Term Data Record Version 4 (LTDR-V4), y probando con varias distribuciones estad铆sticas. La mejor metodolog铆a se aplic贸 al conjunto de la base de datos, y la validez de