2021
DOI: 10.48550/arxiv.2110.10220
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Patch Based Transformation for Minimum Variance Beamformer Image Approximation Using Delay and Sum Pipeline

Abstract: In the recent past, there have been several efforts in accelerating computationally heavy beamforming algorithms such as minimum variance distortionless response (MVDR) beamforming to achieve real-time performance comparable to the popular delay and sum (DAS) beamforming. This has been achieved using a variety of neural network architectures ranging from fully connected neural networks (FCNNs), convolutional neural networks (CNNs) and general adversarial networks (GANs). However most of these approaches are wo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?