Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Epilepsy is a noncommunicable chronic neurological disorder affecting people of all ages, with the highest prevalence in low and middle‐income countries. Despite the pharmacological armamentarium, the plethora of drugs in the market, and other treatment options, 30%–35% of individuals still show resistance to the current medication, termed intractable epilepsy/drug resistance epilepsy, which contributes to 50% of the mortalities due to epilepsy. Therefore, the development of new drugs and agents is needed to manage this devastating epilepsy. We reviewed the pipeline of drugs in “ClinicalTrials. gov,” which is the federal registry of clinical trials to identify drugs and other treatment options in various phases against intractable epilepsy. A total of 31 clinical trials were found regarding intractable epilepsy. Among them, 48.4% (15) are about pharmacological agents, of which 26.6% are in Phase 1, 60% are in Phase 2, and 13.3% are in Phase 3. The mechanism of action or targets of the majority of these agents are different and are more diversified than those of the approved drugs. In this article, we summarized various pharmacological agents in clinical trials, their backgrounds, targets, and mechanisms of action for the treatment of intractable epilepsy. Treatment options other than pharmacological ones, such as devices for brain stimulation, ketogenic diets, gene therapy, and others, are also summarized.
Epilepsy is a noncommunicable chronic neurological disorder affecting people of all ages, with the highest prevalence in low and middle‐income countries. Despite the pharmacological armamentarium, the plethora of drugs in the market, and other treatment options, 30%–35% of individuals still show resistance to the current medication, termed intractable epilepsy/drug resistance epilepsy, which contributes to 50% of the mortalities due to epilepsy. Therefore, the development of new drugs and agents is needed to manage this devastating epilepsy. We reviewed the pipeline of drugs in “ClinicalTrials. gov,” which is the federal registry of clinical trials to identify drugs and other treatment options in various phases against intractable epilepsy. A total of 31 clinical trials were found regarding intractable epilepsy. Among them, 48.4% (15) are about pharmacological agents, of which 26.6% are in Phase 1, 60% are in Phase 2, and 13.3% are in Phase 3. The mechanism of action or targets of the majority of these agents are different and are more diversified than those of the approved drugs. In this article, we summarized various pharmacological agents in clinical trials, their backgrounds, targets, and mechanisms of action for the treatment of intractable epilepsy. Treatment options other than pharmacological ones, such as devices for brain stimulation, ketogenic diets, gene therapy, and others, are also summarized.
α‐Amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) ionotropic glutamate receptors (AMPARs) mediate rapid excitatory synaptic transmission in the mammalian brain, primarily driven by the neurotransmitter glutamate. The modulation of AMPAR activity, particularly calcium‐permeable AMPARs (CP‐AMPARs), is crucially influenced by various auxiliary subunits. These subunits are integral membrane proteins that bind to the receptor's core and modify its functional properties, including ion channel kinetics and receptor trafficking. This review comprehensively catalogs all known AMPAR auxiliary proteins, providing vital insights into the biochemical mechanisms governing synaptic modulation and the specific impact of CP‐AMPARs compared to their calcium‐impermeable AMPA receptor (CI‐AMPARs). Understanding the complex interplay between AMPARs and their auxiliary subunits in different brain regions is essential for elucidating their roles in cognitive functions such as learning and memory. Importantly, alterations in these auxiliary proteins' expression, function or interactions have been implicated in various neurological disorders. Aberrant signaling through CP‐AMPARs, in particular, is associated with severe synaptic dysfunctions across neurodevelopmental, neurodegenerative and psychiatric conditions. Targeting the distinct properties of AMPAR‐auxiliary subunit complexes, especially those involving CP‐AMPARs, could disclose new therapeutic strategies, potentially allowing for more precise interventions in treating complex neuronal disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.