The intertwined task assignment and motion planning problem of assigning a team of fixed-winged unmanned aerial vehicles to a set of prioritized targets in an environment with obstacles is addressed. It is assumed that the targets’ locations and initial priorities are determined using a network of unattended ground sensors used to detect potential threats at restricted zones. The targets are characterized by a time-varying level of importance, and timing constraints must be fulfilled before a vehicle is allowed to visit a specific target. It is assumed that the vehicles are carrying body-fixed sensors and, thus, are required to approach a designated target while flying straight and level. The fixed-winged aerial vehicles are modeled as Dubins vehicles, i.e., having a constant speed and a minimum turning radius constraint. The investigated integrated problem of task assignment and motion planning is posed in the form of a decision tree, and two search algorithms are proposed: an exhaustive algorithm that improves over run time and provides the minimum cost solution, encoded in the tree, and a greedy algorithm that provides a quick feasible solution. To satisfy the target’s visitation timing constraint, a path elongation motion planning algorithm amidst obstacles is provided. Using simulations, the performance of the algorithms is compared, evaluated and exemplified.