Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The intense diversity of the Next-Generation Networking environments like 6G and the forthcoming deployment of immersive applications with varied user-specific requirements transform the efficient allocation of resources into a real challenge. Traditional solutions like the shortest path algorithm and mono-constraint methodologies are inadequate to handle customized user-defined performance parameters and effectively classify physical resources according to these intricate demands. This research offers a new evaluation mechanism to successfully replace the aforementioned traditional path ranking and path selection techniques. Specifically, the proposed framework is integrated with optimization-oriented metrics, each indicating a unique aspect of performance for evaluating candidate network paths. The deployed metrics are then algebraically synthesized to provide a distinctive multidimensional description of the examined substrate resources. These primary and composite metrics adhere to the fundamental monotonicity and isotonicity properties of a Path Algebra; hence, the validity and optimality of the proposed evaluation mechanism is guaranteed by design. To tackle the complexity created by the variety of human-centric customization, a novel methodology that analyzes and determines the weighted influence of the synthesized metrics depending on the characteristics of the served user-centric application is also introduced. The chosen suitable weights address performance-oriented mission-critical tailored objectives for adaptive optimizations. Its innovative algebraic design allows it to successfully describe and rank candidate paths in a versatile way, whether in legacy or modern architectures. The experimental data of the first scenario show that 62.5% and 50% of highlighted path evaluations proposed by the shortest path and unidimensional constraint strategies, respectively, suffer from moderate performance-oriented values compared to the proposed framework. Likewise, the results of the second examined scenario reveal that the proposed composite metric yields more suitable path rankings by 50% in contrast to its traditional counterparts, rendering the contested evaluation mechanisms obsolete.
The intense diversity of the Next-Generation Networking environments like 6G and the forthcoming deployment of immersive applications with varied user-specific requirements transform the efficient allocation of resources into a real challenge. Traditional solutions like the shortest path algorithm and mono-constraint methodologies are inadequate to handle customized user-defined performance parameters and effectively classify physical resources according to these intricate demands. This research offers a new evaluation mechanism to successfully replace the aforementioned traditional path ranking and path selection techniques. Specifically, the proposed framework is integrated with optimization-oriented metrics, each indicating a unique aspect of performance for evaluating candidate network paths. The deployed metrics are then algebraically synthesized to provide a distinctive multidimensional description of the examined substrate resources. These primary and composite metrics adhere to the fundamental monotonicity and isotonicity properties of a Path Algebra; hence, the validity and optimality of the proposed evaluation mechanism is guaranteed by design. To tackle the complexity created by the variety of human-centric customization, a novel methodology that analyzes and determines the weighted influence of the synthesized metrics depending on the characteristics of the served user-centric application is also introduced. The chosen suitable weights address performance-oriented mission-critical tailored objectives for adaptive optimizations. Its innovative algebraic design allows it to successfully describe and rank candidate paths in a versatile way, whether in legacy or modern architectures. The experimental data of the first scenario show that 62.5% and 50% of highlighted path evaluations proposed by the shortest path and unidimensional constraint strategies, respectively, suffer from moderate performance-oriented values compared to the proposed framework. Likewise, the results of the second examined scenario reveal that the proposed composite metric yields more suitable path rankings by 50% in contrast to its traditional counterparts, rendering the contested evaluation mechanisms obsolete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.