The accuracy of aerodynamically controlled guided projectile simulations is largely determined by the aerodynamic model employed in flight simulations which impacts vehicle interaction with the surrounding air. In this work, the performance of projectile path following with two distinct aerodynamic models is examined for their possible influence on trajectory following accuracy. The study incorporates the path following guidance algorithm, which enables the object to navigate along a predefined path. The simulation mathematical model is developed in the MATLAB/Simulink environment. In addition, by integrating the path-following algorithm with the two aerodynamic models, the dynamic behaviour of the aerodynamically controlled projectile can be compared. This allows for a more comprehensive analysis of the trajectory and the effects of each model on the desired flight path. Further research can explore the differences between the two models in greater detail and quantify their impact on unmanned projectile trajectory predictions, in addition to further exploring the specific characteristics and limitations of each model. This will involve analysing their assumptions, computational methods, and inputs to identify potential sources of error or uncertainty in the simulations. Moreover, these results have important implications for the design of aerodynamically controlled projectiles as well as a deeper understanding of aerodynamic mathematical modelling in flight simulation.