In this work leader-follower synchronization is considered for underactuated followers in an inhomogeneous multi-agent system. The goal is to synchronise the motion of a leader and an underactuated follower. Measurements of the leader's position, velocity, acceleration, and jerk are available, while the dynamics of the leader is unknown. The leader velocities are used as input for a constant bearing guidance algorithm to assure that the follower synchronises its motion to the leader. It is also shown that the proposed leader-follower scheme can be applied to multi-agent systems that are subjected to unknown environmental disturbances. Furthermore, the trajectory of the leader does not need to be known. The closed-loop dynamics are analysed and it is shown that under certain conditions all solutions remain bounded and the synchronisation error kinematics are shown to be integral input-to-state stable with respect to changes in the unactuated sway velocity. For straight-line motions, i.e. where the desired yaw rate and sway velocity go to zero, synchronisation is achieved. Simulation results are presented to validate the proposed control strategy.