In response to the shortcomings of the traditional A-star algorithm, such as excessive node traversal, long search time, unsmooth path, close proximity to obstacles, and applicability only to static maps, a path planning method that integrates an adaptive A-star algorithm and an improved Dynamic Window Approach (DWA) is proposed. Firstly, an adaptive weight value is added to the heuristic function of the A-star algorithm, and the Douglas–Pucker thinning algorithm is introduced to eliminate redundant points. Secondly, a trajectory point estimation function is added to the evaluation function of the DWA algorithm, and the path is optimized for smoothness based on the B-spline curve method. Finally, the adaptive A-star algorithm and the improved DWA algorithm are integrated into the fusion algorithm of this article. The feasibility and effectiveness of the fusion algorithm are verified through obstacle avoidance experiments in both simulation and real environments.