Many existing and emerging Scientific highend applications (E-science) require end-to-end circuits interconnecting Grid resources for large data transfers. A few advanced networks, mainly National Research and Education Networks (NRENs), such as Surfnet, National Lambda Rail and Internet 2, now provide mechanisms for end-users to reserve and provision lightpaths via middleware referred to as Network Resource Mangers (NRMs). Although, some progress has been made in automated intra-domain lightpath services, inter-domain lightpath provisioning still requires manual intervention and presents several key challenges such as scalability of topology information exchanged, consistency and scalability of information model, security of access to the resources, hybrid networking and multi-layer lightpaths, and accounting and billing. In this paper, we describe a new architectural framework called Global Lambda Integrated Facility (GLIF) Interdomain Resource Reservation Architecture (GIRRA) with the goal to provide an integrated response to these challenges. We propose a new approach to model GLIF network domains and GOLEs as virtual switches and to describe their behavior, functionality, policy capabilities, and topology aggregation. We define an inter-domain path computation model to determine paths that meet constraints and access policy restrictions. We propose a security framework for authentication and authorization of users and a model for accounting and billing that aims to provide easy and secure access to the resources. Key aspects of the GIRRA solution are that it focuses on the inter-dependence between different challenges of interdomain path provision, and it is built around already existing solutions for intra-domain resource provisioning.