A comparative study of longitudinal and lateral control maneuverer in model predictive control (MPC) schemes and robust state feedback control (RSC) method for trajectory tracking of automated ground vehicles (AGVs) is presented in this paper. Both MPC-based and RSC-based tracking controller are designed on the same basis of longitudinal-lateral-yaw motions of a single-track vehicle model. The main objective is to compare the controllers’ performance of tracking accuracy of path and velocity under different test scenarios. The simulation is implemented on Carsim-Simulink joint platform using high-fidelity vehicle model and the mass uncertainties, sensor measurement noise and the performance in extreme driving conditions: turn with big curvature are considered. The simulation results indicate that mass uncertainty and sensor measurement noise of lateral velocity have little effect on the RSC-based controller, while that have relatively great influence on MPC-based one. However, MPC-based controller shows a shorter response time and more accurate tracking performance than RSC-based scheme. Finally, for the test of turn with curvature 0.02 , the maximum velocity that RSC-based controller can carry out has reached 22m/s, which is slightly better than MPC-based one: 21m/s.