2022
DOI: 10.3390/electronics11244232
|View full text |Cite
|
Sign up to set email alerts
|

Path Tracking for Car-like Robots Based on Neural Networks with NMPC as Learning Samples

Abstract: In the field of path tracking for car-like robots, although nonlinear model predictive control (NMPC) can handle the system constraints well, its real-time performance is poor. To solve this problem, a neural network control method with NMPC as the learning sample is proposed. The design process of this control method includes establishing the NMPC controller based on the time-varying local model, generating learning samples based on this NMPC controller, and training to obtain the neural network controller. T… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 7 publications
references
References 43 publications
0
0
0
Order By: Relevance