Abstract:In this paper we study procedures for pathfollowing parametric mathematical programs with complementarity constraints. We present two algorithms, one based on the penalty approach for solving standalone MPCCs, and one based on tracing active set bifurcations arising from doubly-active complementarity constraints. We demonstrate the performance of these two approaches on a variety of examples with different types of stationary points and also a simple engineering problem with phase changes.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.