Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Salmonella enterica serovar Kentucky ST198 is a major health threat due to its resistance to ciprofloxacin and several other drugs, including third-generation cephalosporins. Many drug-resistant genes have been identified in the Salmonella genomic island 1 variant K (SGI1-K). In this study, we investigated the antimicrobial resistance (AMR) profile and genotypic relatedness of two isolates of ciprofloxacin-resistant (CIP R ) S . Kentucky ST198 from poultry in Northeastern Thailand. We successfully assembled the complete genomes of both isolates, namely SSSE-01 and SSSE-03, using hybrid de novo assembly of both short- and long-read sequence data. The complete genomes revealed their highly similar genomic structures and a novel variant of SGI1-K underlying multidrug-resistant (MDR) patterns, including the presence of bla TEM-1b , which confers resistance to beta-lactams, including cephalosporins and lnu (F) which confers resistance to lincomycin and other lincosamides. In addition, the chromosomal mutations in the quinolone resistance-determining region (QRDR) were found at positions 83 (Ser83Phe) and 87 (Asp87Asn) of GyrA and at positions 57 (Thr57Ser) and 80 (Ser80Ile) of ParC suggesting high resistance to ciprofloxacin. We also compared SSSE-01 and SSSE-03 with publicly available complete genome data and revealed significant variations in SGI1-K genetic structures and variable relationships to antibiotic resistance. In comparison to the other isolates, SGI1-K of SSSE-01 and SSSE-03 had a relatively large deletion in the backbone, spanning from S011 ( traG∆ ) to S027 (res G), and the inversion of the IS 26-S044∆-yidY segment. Their MDR region was characterized by the inversion of a large segment, including the mer operon and the relocation of IntI1 and several resistance genes downstream of the IS 26-S044∆-yidY segment. These structural changes were likely mediated by the recombination of IS 26 . The findings broaden our understanding of the possible evolution pathway of SGI1-K in fostering drug resistance, which may provide opportunities to control these MDR strains. IMPORTANCE The emergence of ciprofloxacin-resistant (CIP R ) Salmonella Kentucky ST198 globally has raised significant concerns. This study focuses on two poultry isolates from Thailand, revealing a distinct Salmonella genomic island 1 variant K (SGI1-K) genetic structure. Remarkably, multiple antibiotic resistance genes (ARGs) were identified within the SGI1-K as well as other locations in the chromosome, but not in plasmids. Comparing the SGI1-K genetic structures among global and even within-country isolates unveiled substantial variations. Intriguingly, certain isolates lacked ARGs within the SGI1-K, while others had ARGs relocated outside. The presence of chromosomal extended-spectrum β -lactamase (ESBL) genes and lincosamide resistance, lnu (F), gene, could potentially inform the choices of the treatment of CIP R S . Kentucky ST198 infections in humans. This study highlights the importance of understanding the diverse genetic structures of SGI1-K and emphasizes the role of animals and humans in the emergence of antimicrobial resistance.
Salmonella enterica serovar Kentucky ST198 is a major health threat due to its resistance to ciprofloxacin and several other drugs, including third-generation cephalosporins. Many drug-resistant genes have been identified in the Salmonella genomic island 1 variant K (SGI1-K). In this study, we investigated the antimicrobial resistance (AMR) profile and genotypic relatedness of two isolates of ciprofloxacin-resistant (CIP R ) S . Kentucky ST198 from poultry in Northeastern Thailand. We successfully assembled the complete genomes of both isolates, namely SSSE-01 and SSSE-03, using hybrid de novo assembly of both short- and long-read sequence data. The complete genomes revealed their highly similar genomic structures and a novel variant of SGI1-K underlying multidrug-resistant (MDR) patterns, including the presence of bla TEM-1b , which confers resistance to beta-lactams, including cephalosporins and lnu (F) which confers resistance to lincomycin and other lincosamides. In addition, the chromosomal mutations in the quinolone resistance-determining region (QRDR) were found at positions 83 (Ser83Phe) and 87 (Asp87Asn) of GyrA and at positions 57 (Thr57Ser) and 80 (Ser80Ile) of ParC suggesting high resistance to ciprofloxacin. We also compared SSSE-01 and SSSE-03 with publicly available complete genome data and revealed significant variations in SGI1-K genetic structures and variable relationships to antibiotic resistance. In comparison to the other isolates, SGI1-K of SSSE-01 and SSSE-03 had a relatively large deletion in the backbone, spanning from S011 ( traG∆ ) to S027 (res G), and the inversion of the IS 26-S044∆-yidY segment. Their MDR region was characterized by the inversion of a large segment, including the mer operon and the relocation of IntI1 and several resistance genes downstream of the IS 26-S044∆-yidY segment. These structural changes were likely mediated by the recombination of IS 26 . The findings broaden our understanding of the possible evolution pathway of SGI1-K in fostering drug resistance, which may provide opportunities to control these MDR strains. IMPORTANCE The emergence of ciprofloxacin-resistant (CIP R ) Salmonella Kentucky ST198 globally has raised significant concerns. This study focuses on two poultry isolates from Thailand, revealing a distinct Salmonella genomic island 1 variant K (SGI1-K) genetic structure. Remarkably, multiple antibiotic resistance genes (ARGs) were identified within the SGI1-K as well as other locations in the chromosome, but not in plasmids. Comparing the SGI1-K genetic structures among global and even within-country isolates unveiled substantial variations. Intriguingly, certain isolates lacked ARGs within the SGI1-K, while others had ARGs relocated outside. The presence of chromosomal extended-spectrum β -lactamase (ESBL) genes and lincosamide resistance, lnu (F), gene, could potentially inform the choices of the treatment of CIP R S . Kentucky ST198 infections in humans. This study highlights the importance of understanding the diverse genetic structures of SGI1-K and emphasizes the role of animals and humans in the emergence of antimicrobial resistance.
Non-typhoidal Salmonella species are one of the leading causes of gastrointestinal disease in North America, leading to a significant burden on the healthcare system resulting in a huge economic impact. Consequently, early detection of Salmonella species in the food supply, in accordance with food safety regulations, is crucial for protecting public health, preventing outbreaks, and avoiding serious economic losses. A variety of techniques have been employed to detect the presence of this pathogen in the food supply, including culture-based, immunological, and molecular methods. The present review summarizes these methods and highlights recent updates on promising emerging technologies, including aptasensors, Surface Plasmon Resonance (SPR), and Surface Enhanced Raman Spectroscopy (SERS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.