Mycoplasma bovis is a leading cause of pneumonia in modern calf rearing. Fast identification is essential to ensure appropriate antimicrobial therapy. Therefore, the objective of this study was to develop a protocol to identify M. bovis from bronchoalveolar lavage fluid (BALf) with matrix-assisted laser desorption ionization–time of flight mass spectrometry MALDI-TOF MS and to determine the diagnostic accuracy in comparison with other techniques. BALf was obtained from 104 cattle, and the presence of M. bovis was determined in the following three ways: (i) rapid identification of M. bovis with MALDI-TOF MS (RIMM) (BALf was enriched and after 24, 48, and 72 h of incubation and was analyzed using MALDI-TOF MS), (ii) triplex real-time PCR for M. bovis, Mycoplasma bovirhinis, and Mycoplasma dispar, and (iii) 10-day incubation on selective-indicative agar. The diagnostic accuracy of the three tests was determined with Bayesian latent class modeling (BLCM). After 24 h of enrichment, M. bovis was identified with MALDI-TOF MS in 3 out of 104 BALf samples. After 48 and 72 h of enrichment, 32/104 and 38/100 samples, respectively, were M. bovis positive. Lipase-positive Mycoplasma-like colonies were seen in 28 of 104 samples. Real-time PCR resulted in 28/104 positive and 12/104 doubtful results for M. bovis. The BLCM showed a sensitivity (Se) and specificity (Sp) of 86.6% (95% credible interval [CI], 69.4% to 97.6%) and 86.4% (CI, 76.1 to 93.8) for RIMM. For real-time PCR, Se was 94.8% (CI, 89.9 to 97.9) and Sp was 88.9% (CI, 78.0 to 97.4). For selective-indicative agar, Se and Sp were 70.5% (CI, 52.1 to 87.1) and 93.9% (CI, 85.9 to 98.4), respectively. These results suggest that rapid identification of M. bovis with MALDI-TOF MS after an enrichment procedure is a promising test for routine diagnostics in veterinary laboratories.