Pseudomonas aeruginosa is one of the causative pathogens of bovine mastitis. Most P. aeruginosa strains possess the type III secretion system (TTSS), which may increase somatic cell counts (SCCs) in milk from mastitis-affected cows. Moreover, most of P. aeruginosa cells can form biofilms, thereby reducing antibiotic efficacy. In this study, the presence and effect of TTSS-related genotypes on increase of SCCs among 122 P. aeruginosa isolates obtained from raw milk samples from mastitisaffected cows and their antibiotic susceptibility at planktonic and biofilm status were investigated. Based on the presence of TTSS-related genes a total of 82.7% of the isolates were found to harbour exoU and/or exoS genes, including the invasive (exoU-/ exoS+, 69.4%), cytotoxic (exoU+/exoS-, 8.3%) and cytotoxic/invasive strains (exoU+/ exoS+, 5.0%). Milk containing exoS-positive isolates had higher SCCs than those containing exoS-negative isolates. The majority of isolates showed gentamicin, amikacin, meropenem and ciprofloxacin susceptibility at planktonic status. However, the susceptibility was decreased at the biofilm status. Based on minimum biofilm eradication concentration (MBEC)/minimum inhibitory concentration (MIC) ratios, the range of change in antibiotic susceptibility varied widely depending on the antibiotics (from ≥ 3.1-fold to ≥ 475.0-fold). In conclusion, most P. aeruginosa isolates studied here had a genotype related to increase in SCCs. The efficiency of antibiotic therapy against P. aeruginosa-related bovine mastitis could be improved by analysing both the MBEC and the MIC of isolates.