Background: Gastrointestinal tract function and it's integrity are controlled by a number of peptides whose secretion is influenced by severe inflammation. In stomach the main regulatory peptide is ghrelin. For upper small intestine cholecystokinin and lower small intestine glucagon-like peptide-1 are secreted, while fibroblast growth factor-21 is secreted by several organs, including the liver, pancreas, and adipose tissue [12]. Hematopoietic stem cell transplantation causes serious mucosal damage, which can reflect on this peptides. Methods: The aim of the study was to determine fasting plasma concentrations of ghrelin, cholecystokinin, glucagon-like peptide-1, and fibroblast growth factor-21, and their gene expressions, before and 6 months after hematopoietic stem cell transplantation.27 children were studied, control group included 26 healthy children. Results: Acute graft versus host disease was diagnosed in 11 patients (41%, n = 27). Median pre-transplantation concentrations of gastrointestinal peptides, as well as their gene expressions, were significantly lower in studied group compared with the control group. Only median of fibroblast growth factor-21 concentration was nearsignificantly higher before stem cell transplantation than in the control group. The post-hematopoietic transplant results revealed significantly higher concentrations of the studied peptides (except fibroblast growth factor-21) and respective gene expressions as compare to pre transplant results. Median glucagone like peptide-1 concentrations were significantly decreased in patients with features of acute graft versus host disease. Moreover, negative correlation between glucagone like peptide-1 concentrations and acute graft versus host disease severity was found. Conclusions: Increased concentrations and gene expressions of gastrointestinal tract regulation peptides can be caused by stimulation of regeneration in the severe injured organ. Measurement of these parameters may be a useful method of assessment of severity of gastrointestinal tract complications of hematopoietic stem cell transplantation.