Please cite this article as: A. Piacentino. Thermal analysis and new insights to support decision making in retrofit and relaxation of heat exchanger networks, Applied Thermal Engineering (2011), doi: 10.1016/ j.applthermaleng.2011.07.002 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
AbstractPinch analysis offers a rational framework for identifying energy saving targets and designing efficient heat recovery networks, especially in process industry. Several scientists have contributed to improve and automate the original pinch method over the last decades, increasing its capability to deal with a number of specific issues; the expertise of the analyst,however, remains determinant in achievingoptimal results. In this paper a procedure for retrofit of existing networks is proposed, based on an integrate use of several techniques (either existing or innovative). The diagnosis of the existing network and of a "Minimum Energy Requirement" configuration emerges as a useful preliminary instrument for the retrofit study. Then, an innovative spider-type diagram is presented to identify a hierarchic order among a set of retrofit topologies and the most promising relaxation paths for each network topology. The procedure is aimed at offeringa conceptual-interpretative approach to energy analysts, to identify preferential routes in networks' retrofit (and exclude the least promising improvement directions of the existing network); it should be therefore conceived as alternative to algorithms for automatic optimization of heat exchanger networks. The focus is mainly put on the energetic performance of the different schemes (evaluated by thermal analysis of the involved heat exchangers), but the methodology finally enables the energy analyst to identify solutions achieving near-minimum total costs.