Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
PurposeDespite the continuous development and application of new digital technologies in the construction industry, there has been little research on digital technology trajectories in the construction industry. The study addresses the issue faced by the construction industry in exploring digital technology trajectories: how to comprehensively identify and analyse digital technology pathways across multiple technology fields in the construction industry.Design/methodology/approachFirstly, the digital technology patent identification and classification method based on text mining is used to identify digital technology patents and construct a digital technology innovation network. Second, the main path of the digital technology innovation network is identified with the help of SPNP. Then, the subpaths of the digital technology innovation network are identified with the help of the Louvain algorithm and SPNP. Finally, starting from the technology nodes where the main path and subpaths intersect, the technological similarity of the paths is analysed to explore the evolutionary characteristics of the technology trajectories. In light of this, the developed method is applied to the global construction industry patent dataset to analyse the trajectories of digital technologies.FindingsThe technological innovation path in the construction industry starts with construction materials and gradually expands to intelligence, automation and digital data processing technology. Equipment and devices with electronic digital data processing capabilities as well as improvements in green building technologies and user experience-enhancing technologies, may be the future of the construction industry. With the increasing demand for green buildings and intelligent buildings, the direction of digital technology innovation in the construction industry is gradually tilted towards these areas. In addition, influenced by geographic and economic factors, there is a spatial clustering effect of digital technology innovation in the construction industry.Research limitations/implicationsFuture research should analyse in depth the performance of different countries and regions in digital technology innovation and explore the root causes, motivations and influencing factors behind it, such as the policy environment, the level of the economy and the investment in research and development. Exploring the reasons affecting digital technology innovation can help formulate more targeted policies and promote cooperation and exchange of digital technology innovation in the global construction industry. Meanwhile, to solve the problems of overly broad IPC categorization and the difficulty of accurately describing cross-field innovations, combining IPC co-occurrence networks with patent citation networks is an effective strategy. This strategy can track technologically interrelated patents and provide more specific contents to know the advantages and challenges of the construction industry in the field of digital technology innovation.Practical implicationsThe study has practical implications for the construction industry. The identification of digital technology innovation trajectories provides valuable insights for industry firms and research institutes. It helps them understand the current and future directions of digital technology in construction, enabling them to stay at the forefront of technological advancements. The findings highlight the importance of focusing on areas such as solar energy utilisation, green energy, intelligence, automation and data applications. This knowledge can guide firms in developing new building materials, incorporating digital information technologies and enhancing user experiences. The study’s results can inform strategic decision-making, technology adoption and innovation management in the construction sector.Social implicationsThe social implications of this study are significant for various stakeholders. The identification of digital technology innovation trajectories in the construction industry highlights the potential benefits for society. The focus on green energy, intelligent buildings and enhanced user experiences aligns with the increasing demand for sustainability, energy efficiency and comfortable living environments. These technological advancements can contribute to reducing environmental impact, improving quality of life and promoting sustainable development. The findings can inform policymakers, urban planners and architects in shaping regulations, designing sustainable cities and creating buildings that prioritize energy efficiency and user well-being. Ultimately, the study’s social implications aim to foster a more sustainable and livable built environment.Originality/valueAn identification method integrated with SPNP and the Louvain algorithm is developed to map digital technology innovation trajectories in the construction industry. This study helps to reveal the trajectories of digital technology innovation, provides new perspectives, insight and ideas for research in related fields and has great potential for applications in practice to promote the innovation and development of the construction industry.
PurposeDespite the continuous development and application of new digital technologies in the construction industry, there has been little research on digital technology trajectories in the construction industry. The study addresses the issue faced by the construction industry in exploring digital technology trajectories: how to comprehensively identify and analyse digital technology pathways across multiple technology fields in the construction industry.Design/methodology/approachFirstly, the digital technology patent identification and classification method based on text mining is used to identify digital technology patents and construct a digital technology innovation network. Second, the main path of the digital technology innovation network is identified with the help of SPNP. Then, the subpaths of the digital technology innovation network are identified with the help of the Louvain algorithm and SPNP. Finally, starting from the technology nodes where the main path and subpaths intersect, the technological similarity of the paths is analysed to explore the evolutionary characteristics of the technology trajectories. In light of this, the developed method is applied to the global construction industry patent dataset to analyse the trajectories of digital technologies.FindingsThe technological innovation path in the construction industry starts with construction materials and gradually expands to intelligence, automation and digital data processing technology. Equipment and devices with electronic digital data processing capabilities as well as improvements in green building technologies and user experience-enhancing technologies, may be the future of the construction industry. With the increasing demand for green buildings and intelligent buildings, the direction of digital technology innovation in the construction industry is gradually tilted towards these areas. In addition, influenced by geographic and economic factors, there is a spatial clustering effect of digital technology innovation in the construction industry.Research limitations/implicationsFuture research should analyse in depth the performance of different countries and regions in digital technology innovation and explore the root causes, motivations and influencing factors behind it, such as the policy environment, the level of the economy and the investment in research and development. Exploring the reasons affecting digital technology innovation can help formulate more targeted policies and promote cooperation and exchange of digital technology innovation in the global construction industry. Meanwhile, to solve the problems of overly broad IPC categorization and the difficulty of accurately describing cross-field innovations, combining IPC co-occurrence networks with patent citation networks is an effective strategy. This strategy can track technologically interrelated patents and provide more specific contents to know the advantages and challenges of the construction industry in the field of digital technology innovation.Practical implicationsThe study has practical implications for the construction industry. The identification of digital technology innovation trajectories provides valuable insights for industry firms and research institutes. It helps them understand the current and future directions of digital technology in construction, enabling them to stay at the forefront of technological advancements. The findings highlight the importance of focusing on areas such as solar energy utilisation, green energy, intelligence, automation and data applications. This knowledge can guide firms in developing new building materials, incorporating digital information technologies and enhancing user experiences. The study’s results can inform strategic decision-making, technology adoption and innovation management in the construction sector.Social implicationsThe social implications of this study are significant for various stakeholders. The identification of digital technology innovation trajectories in the construction industry highlights the potential benefits for society. The focus on green energy, intelligent buildings and enhanced user experiences aligns with the increasing demand for sustainability, energy efficiency and comfortable living environments. These technological advancements can contribute to reducing environmental impact, improving quality of life and promoting sustainable development. The findings can inform policymakers, urban planners and architects in shaping regulations, designing sustainable cities and creating buildings that prioritize energy efficiency and user well-being. Ultimately, the study’s social implications aim to foster a more sustainable and livable built environment.Originality/valueAn identification method integrated with SPNP and the Louvain algorithm is developed to map digital technology innovation trajectories in the construction industry. This study helps to reveal the trajectories of digital technology innovation, provides new perspectives, insight and ideas for research in related fields and has great potential for applications in practice to promote the innovation and development of the construction industry.
PurposeIn recent decades, interest in digital transformation (DX) within the architecture, engineering, and construction (AEC) industry has significantly increased. Despite the existence of several literature reviews on DX research, there remains a notable lack of systematic quantitative and visual investigations into the structure and evolution of this field. This study aims to address this gap by uncovering the current state, key topics, keywords, and emerging areas in DX research specific to the AEC sector.Design/methodology/approachEmploying a holistic review approach, this study undertook a thorough and systematic analysis of the literature concerning DX in the AEC industry. Utilizing a bibliometric analysis, 3,656 papers were retrieved from the Web of Science spanning the years 1990–2023. A scientometric analysis was then applied to these publications to discern patterns in publication years, geographical distribution, journals, authors, citations, and keywords.FindingsThe findings identify China, the USA, and England as the leading contributors in the field of DX in AEC sector. Prominent keywords include “building information modeling”, “design”, “system”, “framework”, “adoption”, “model”, “safety”, “internet of things”, and “innovation”. Emerging areas of interest are “deep learning”, “embodied energy”, and “machine learning”. A cluster analysis of keywords reveals key research themes such as “deep learning”, “smart buildings”, “virtual reality”, “augmented reality”, “smart contracts”, “sustainable development”, “building information modeling”, “big data”, and “3D printing”.Originality/valueThis study is among the earliest to provide a comprehensive scientometric mapping of the DX field. The findings presented here have significant implications for both industry practitioners and the scientific community, offering a thorough overview of the current state, prominent keywords, topics, and emerging areas within DX in the AEC industry. Additionally, this research serves as an invaluable reference and guideline for scholars interested in this subject.
This research presents an innovative solution to optimise maintenance planning and integrity in offshore facilities, specifically regarding corrosion management. The study introduces a prototype for maintenance planning on offshore oil platforms, developed through the Design Science Research (DSR) methodology. Using a 3D CAD/CAE model, the prototype integrates machine learning models to predict corrosion progression, essential for effective maintenance strategies. Key components include damage assessment, regulatory compliance, asset criticality, and resource optimisation, collectively enabling precise and efficient anti-corrosion plans. Case studies on oil and gas platforms validate the practical application of this methodology, demonstrating reduced costs, lower risks associated with corrosion, and enhanced planning efficiency. Additionally, the research opens pathways for future advancements, such as integrating IoT technologies for real-time data collection and applying deep learning models to improve predictive accuracy. These potential extensions aim to evolve the system into a more adaptable and powerful tool for industrial maintenance, with applicability beyond offshore to other environments, including onshore facilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.