Optically pure epoxides are essential chiral precursors for the production of (S)-propranolol, (S)-alprenolol, and other β-adrenergic receptor blocking drugs. Although the enzymatic production of these bulky epoxides has proven difficult, here we report a method to effectively improve the activity of BmEH, an epoxide hydrolase from Bacillus megaterium ECU1001 toward α-naphthyl glycidyl ether, the precursor of (S)-propranolol, by eliminating the steric hindrance near the potential product-release site. Using X-ray crystallography, mass spectrum, and molecular dynamics calculations, we have identified an active tunnel for substrate access and product release of this enzyme. The crystal structures revealed that there is an independent product-release site in BmEH that was not included in other reported epoxide hydrolase structures. By alanine scanning, two mutants, F128A and M145A, targeted to expand the potential product-release site displayed 42 and 25 times higher activities toward α-naphthyl glycidyl ether than the wild-type enzyme, respectively. These results show great promise for structure-based rational design in improving the catalytic efficiency of industrial enzymes for bulky substrates.epoxide hydrolase | X-ray crystallography | protein engineering | product release | bulky substrate O ptically pure epoxides and the corresponding vicinal diols are valuable chiral building blocks for the production of pharmaceutically active compounds and other fine chemicals (1). Existing approaches for preparing enantiopure epoxides and diols include the asymmetric epoxidation or dihydroxylation of olefin substrates and the resolution of racemic epoxides. These reactions can be accomplished with either chemical catalysts such as chiral salen cobalt complexes and porphyrin manganese adducts or biocatalysts such as monooxygenases and epoxide hydrolases (EHs) (2-4). In the past two decades, EHs have received much attention because they are cofactor-independent enzymes that are "easy to use" for catalyzing the hydrolysis of racemic epoxides to yield highly enantiopure epoxides and vicinal diols (1, 5, 6). However, application of EHs in laboratory and industry was often hindered by their narrow substrate scope, low enantioselectivity, and regioselectivity, or product inhibition (7,8).Many protein-engineering efforts have been made to overcome these drawbacks (9, 10). For example, directed evolution by error-prone PCR or DNA shuffling has been used to enhance the activity and enantioselectivity of EHs (11-13). Structureguided mutagenesis also generated a few EH variants with improved catalytic performance (14-16). The strategy of iterative Combinatorial Active Site-Saturation Test (CAST) combines the rational approach and directed evolution to yield high-quality and small focused mutant libraries for screening EHs with better enantioselectivity (7,17). By mutating residues at the substratebinding site, the substrates of EHs have been expanded to include cyclic meso-epoxides, phenyl glycidyl ether (PGE) derivatives, and other...