The expanse of publications in tissue engineering (TE) and orthopedic TE (OTE) over the past 20 years presents an opportunity to probe emergent trends in the field to better guide future technologies that can make an impact on musculoskeletal therapies. Leveraging this trove of knowledge, a hierarchical systematic search method and trend analysis using connected network mapping of key terms is developed. Within discrete time intervals, an accelerated publication rate for anatomic orthopedic tissue engineering (AOTE) of osteochondral defects, tendons, menisci, and entheses is identified. Within these growing fields, the top-listed key terms are extracted and stratified into evident categories, such as biomaterials, delivery method, or 3D printing and biofabrication. It is then identified which categories decreased, remained constant, increased, or emerged over time, identifying the specific emergent categories currently driving innovation in orthopedic repair technologies. Together, these data demonstrate a significant convergence of material types and descriptors used across tissue types. From this convergence, design criteria to support future research of anatomic constructs that mimic both the form and function of native tissues are formulated. In summary, this review identifies large-scale trends and predicts new directions in orthopedics that will define future materials and technologies.