Cyber-physical systems are systems where the environment interacts with computers (the cyber part) with real-time constraints. Emerging technologies, such as artificial intelligence and machine learning, call for ever-increasing processing power. However, for real-time systems, we need to prove statically that this processing demand can be performed within strict deadlines. This paper explores a time-predictable multicore architecture for those demanding cyber-physical systems. We explore different models of communication between those multiple cores. We compare the message passing model on top of a network-on-chip with message passing on two forms of shared scratchpad memory.