This article argues that complexity scientists have been searching for a universal complexity in the form of a “theory of everything” since some important theoretical breakthroughs such as Bertalanffy’s general systems theory, Wiener’s cybernetics, chaos theory, synergetics, self-organization, self-organized criticality and complex adaptive systems, which brought the study of complex systems into mainstream science. In this respect, much attention has been paid to the importance of a “reductionist complexity science” or a “reductionist theory of everything”. Alternatively, many scholars strongly argue for a holistic or emergentist “theory of everything”. The unifying characteristic of both attempts to account for complexity is an insistence on one robust explanatory framework to describe almost all natural and socio-technical phenomena. Nevertheless, researchers need to understand the conceptual historical background of “complexity science” in order to understand these longstanding efforts to develop a single all-inclusive theory. In this theoretical overview, I address this underappreciated problem and argue that both accounts of the “theory of everything” seem problematic, as they do not seem to be able to capture the whole of reality. This realization could mean that the idea of a single omnipotent theory falls flat. However, the prospects for a “holistic theory of everything” are much better than a “reductionist theory of everything”. Nonetheless, various forms of contemporary systems thinking and conceptual tools could make the path to the “theory of everything” much more accessible. These new advances in thinking about complexity, such as “Bohr’s complementarity”, Morin’s Complex thinking, and Cabrera’s DSRP theory, might allow the theorists to abandon the EITHER/OR logical operators and start thinking about BOTH/AND operators to seek reconciliation between reductionism and holism, which might lead them to a new “theory of everything”.