2018
DOI: 10.1007/978-3-319-94845-4_12
|View full text |Cite
|
Sign up to set email alerts
|

Pattern Discovery from Big Data of Food Sampling Inspections Based on Extreme Learning Machine

Abstract: Food sampling programs are implemented from time to time in local areas or throughout the country in order to guarantee food safety and to improve food quality. The hidden patterns in the accumulated huge amount of data and their potential values are worthy to research. In this paper, Extreme learning machine (ELM) is employed on real data sets collected from the food safety inspections of China in recent two years, in order to mine the relationship between food quality and food category, manufacturing site an… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 18 publications
0
1
0
Order By: Relevance
“…da Costa and Llobodanin [25] utilized similar approach of combining feature selection and ELM for classification of different kinds of wines. Liu and Li [105] demonstrated ELM was also adaptive for prediction during large-scale food sampling analysis. Zhang and Zhou [228] applied ELM in prediction of dairy food safety from big data and proved ELM's superiority to other methods such as BP neural network and support vector machine.…”
Section: Food Industry Applicationmentioning
confidence: 99%
“…da Costa and Llobodanin [25] utilized similar approach of combining feature selection and ELM for classification of different kinds of wines. Liu and Li [105] demonstrated ELM was also adaptive for prediction during large-scale food sampling analysis. Zhang and Zhou [228] applied ELM in prediction of dairy food safety from big data and proved ELM's superiority to other methods such as BP neural network and support vector machine.…”
Section: Food Industry Applicationmentioning
confidence: 99%