The motion of a ferromagnetic domain wall in nanodevices is usually induced by means of external magnetic fields or polarized currents. Here, we demonstrate the possibility to reversibly control the position of a N eel domain wall in a ferromagnetic nanostripe through a uniform mechanical stress. The latter is generated by an electro-active substrate combined with the nanostripe in a multiferroic heterostructure. We develop a model describing the magnetization distribution in the ferromagnetic material, properly taking into account the magnetoelectric coupling. Through its numerical implementation, we obtain the relationship between the electric field applied to the piezoelectric substrate and the position of the magnetic domain wall in the nanostripe. As an example, we analyze a structure composed of a PMN-PT substrate and a TbCo 2 /FeCo composite nanostripe.