“…These features consolidate information about pavement, including records of maintenance and rehabilitation activities, traffic conditions, structural capacity, and exposure to various environmental conditions. [9] 2019 AdaBoost LTPP X X X Wang et al [53] 2021 Adaboost LTPP X X X Hossain et al [54] 2019 ANN LTPP X X Abdelaziz et al [30] 2020 ANN LTPP X X Zeiada et al [55] 2020 DT, SVM, EBT, GPR, ANN LTPP X X X Damirchilo et al [56] 2020 XGBoost LTPP X X X X Zhang et al [67] 2020 GBDT LTPP X X X Guo et al [57] 2021 LightGBM LTPP X X X Gharieb et al [58] 2021 ANN NRN X Marcelino et al [59] 2021 RF LTPP X X X X Naseri et al [60] 2022 RF LTPP X X X X Luo et al [61] 2022 GBDT, XGBoost, SVM LTPP X X X Song et al [62] 2022 ThunderGBM LTPP X X X X Sandamal et al [63] 2023 kNN, SVM, DT, RF, XGBoost Proprietary 1 X Abdualaziz et al [64] 2023 ANN LTPP Naseri et al [65] 2023 DT, SVM, RF, ANN LTPP X X X Sharma et al [66] 2023 GBDT, ANN, XRT, GLM, RF LTPP X X X In the models analyzed, a majority utilize data on traffic, with 89% of the studies incorporating this variable, while climatic factors and pavement structures are considered in 78%. This wide usage reflects a holistic approach to integrating diverse yet influential factors, underscoring the collective recognition of their importance in accurately predicting pavement conditions.…”