We integrated four gene expression profile data sets, namely two different pair-matched stage I lung adenocarcinoma data sets, secondary metastatic tumors vs benign tumors and lung tumor metastasizes to the brain, and we identified one kinase, T-LAK Cell-Originated Protein Kinase (TOPK), as a putative gene that promotes metastasis. To delineate the role of TOPK in lung cancer, we showed that overexpression of TOPK, but not a catalytically inactive form of TOPK, can enhance the migration and invasion of lung fibroblasts or cells with low TOPK expression. In addition, TOPK-induced cell migration was shown to be a PI3K/AKT-dependent event. TOPK concurrently promoted AKT phosphorylation at Ser 473 and decreased the phosphatase and tensin homolog (PTEN) levels, whereas TOPK knockdown had the reverse effects. LY294002, a PI3K inhibitor, did not inhibit the TOPK-induced decrease in PTEN, and coexpression of PTEN significantly reduced TOPK-induced AKT phosphorylation in a dose-dependent manner; these results indicate that the TOPK-mediated PTEN decrease has an upstream role in regulating PI3K/AKT-stimulated migration. Using immunohistochemical analysis of lung cancer tissue samples, we showed that a high TOPK expression level correlates strongly with reduced overall and disease-free survivals. Moreover, an inverse correlation between TOPK and PTEN expression was present and is consistent with the biochemical findings. Finally, a combination of high TOPK and low PTEN expression was inversely correlated with overall and disease-free survivals, independent of other pathologic staging factors. Our results suggest that TOPK is a potential therapeutic target in lung cancer that promotes cell migration by modulating a PI3K/PTEN/AKT-dependent signaling pathway; they also suggest that high TOPK expression, either alone or in combination with a low level of PTEN, may serve as a prognostic marker for lung cancer.