During the manufacturing process of printed circuit boards (PCBs), quality defects can occur, which can affect the performance and reliability of PCBs. Existing deep learning-based PCB defect detection methods are difficult to simultaneously achieve the goals of high detection accuracy, fast detection speed, and small number of parameters. Therefore, this paper proposes a PCB defect detection algorithm based on CDI-YOLO. Firstly, the coordinate attention mechanism (CA) is introduced to improve the backbone and neck network of YOLOv7-tiny, enhance the feature extraction capability of the model, and thus improve the accuracy of model detection. Secondly, DSConv is used to replace part of the common convolution in YOLOv7-tiny to achieve lower computing costs and faster detection speed. Finally, Inner-CIoU is used as the bounding box regression loss function of CDI-YOLO to speed up the bounding box regression process. The experimental results show that the method achieves 98.3% mAP on the PCB defect dataset, the detection speed is 128 frames per second (FPS), the parameters is 5.8 M, and the giga floating-point operations per second (GFLOPs) is 12.6 G. Compared with the existing methods, the comprehensive performance of this method has advantages.