Fig. 1. We present LOGAN, a deep neural network which learns general-purpose shape transforms from unpaired domains. By altering only the two input data domains for training, without changing the network architecture or any hyper-parameters, LOGAN can transform between chairs and tables, from cross-sectional profiles to surfaces, as well as adding arms to chairs. It can also learn both style-preserving content transfer (letters R → P , A → H , in different font styles) and content-preserving style transfer (wide to narrow S , thick to thin I , thin to thick G, and italic to non-italic A.)We introduce LOGAN, a deep neural network aimed at learning generalpurpose shape transforms from unpaired domains. The network is trained on two sets of shapes, e.g., tables and chairs, while there is neither a pairing between shapes from the domains as supervision nor any point-wise correspondence between any shapes. Once trained, LOGAN takes a shape from one domain and transforms it into the other. Our network consists of an autoencoder to encode shapes from the two input domains into a common latent space, where the latent codes concatenate multi-scale shape features, resulting in an overcomplete representation. The translator is based on a generative adversarial network (GAN), operating in the latent space, where an adversarial loss enforces cross-domain translation while a feature preservation loss ensures that the right shape features are preserved for a natural shape transform. We conduct ablation studies to validate each of our key network designs and demonstrate superior capabilities in unpaired shape transforms on a variety of examples over baselines and state-of-the-art approaches. We show that LOGAN is able to learn what shape features to preserve during shape translation, either local or non-local, whether content or style, depending solely on the input domains for training.