Studies have confirmed that olanzapine, the mainstay treatment for schizophrenia, triggers metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). However, the etiology of olanzapine-induced NAFLD is poorly understood. Proprotein convertase subtilisin kexin type 9 (PCSK9) is involved in NAFLD pathogenesis, and metformin can significantly decrease circulating PCSK9. The purpose of this study was to investigate the role of PCSK9 and explore the therapeutic effect of metformin for olanzapine-associated NAFLD. Olanzapine significantly upregulated PCSK9 and promoted lipid accumulation in mouse livers and HepG2 and AML12 cells. Metformin ameliorated these pathological alterations. PCSK9 upstream regulator liver X receptor α (LXRα) was significantly upregulated in olanzapine-induced NAFLD. LXRα antagonist treatment and LXRα overexpression resulted in a decrease and increase of PCSK9, respectively. Hepatic lipogenesis-associated genes FAS and SCD1 were significantly upregulated in olanzapine-induced NAFLD mice and HepG2 cells overexpressing PCSK9, and genes related to lipid β-oxidation (SCAD and PPARα) were downregulated, while metformin reversed these changes. In addition, we found that LXRα overexpression compromised the effect of metformin on PCSK9 levels and intracellular lipid droplet formation. Taken together, our findings suggest that olanzapine enhances hepatic PCSK9 expression by upregulating LXRα, thereby increasing FAS and SCD1 expression as well as decreasing SCAD and PPARα, and promoting lipid accumulation, and, subsequently, NAFLD, which is ameliorated by metformin.