Adoptive therapy of malignant diseases by chimeric antigen receptor (CAR) redirected T cells takes advantage of the patient's own immune system to recognize and destroy cancer cells. This is impressively demonstrated by the induction of complete and lasting remissions of leukemia with CAR-engineered T cells in early phase trials. Recent developments in optimizing the CAR design, in the recognition of target cells and the production of modified cells for clinical use, have paved the path for a broader application than currently explored. The chapter reviews the differences in CAR design, the success in the treatment of hematologic malignancies, the challenges in treating solid cancer, the treatment-related toxicities, and strategies to improve safety of CAR T cell therapy. Challenges for future applications are discussed.