Although substantial quantities of potent therapies for multiple myeloma (MM) have been established, MM remains an incurable disease. In recent years, our understanding of the initiation, development, and metastasis of cancers has made a qualitative leap. Cancers attain the abilities to maintain proliferation signals, escape growth inhibitors, resist cell death, induce angiogenesis, and more importantly, escape anti-tumor immunity and reprogram metabolism, which are the hallmarks of cancers. Besides, different cancers have different tumor microenvironments (TME), thus, we pay more attention to the TME in the pathogenesis of MM. Many researchers have identified that myeloma cells interact with the components of TME, which is beneficial for their survival, ultimately causing the formation of immunosuppressive and high-metabolism TME. In the process, transforming growth factor-β (TGF-β), as a pivotal cytokine in the TME, controls various cells’ fates and influences numerous metabolic pathways, including inhibiting immune cells to infiltrate the tumors, suppressing the activation of anti-tumor immune cells, facilitating more immunosuppressive cells, enhancing glucose and glutamine metabolism, dysregulating bone metabolism and so on. Thus, we consider TGF-β as the tumor promoter. However, in healthy cells and the early stage of tumors, it functions as a tumor suppressor. Due to the effect of context dependence, TGF-β has dual roles in TME, which attracts us to further explore whether targeting it can overcome obstacles in the treatment of MM by regulating the progression of myeloma, molecular mechanisms of drug resistance, and various signaling pathways in the immune and metabolic microenvironment. In this review, we predominantly discuss that TGF-β promotes the development of MM by influencing immunity and metabolism.