Lipid transfer proteins (LTPs) are the major allergens of Rosaceae fruits in the Mediterranean area. Pru p 3, the LTP and major allergen of peach, is a suitable model for studying food allergy and amino acid sequences related with its IgE-binding capacity. In this work, we sought to map IgE mimotopes on the structure of Pru p 3, using the combination of a random peptide phage display library and a three-dimensional modelling approach. Pru p 3-specific IgE was purified from 2 different pools of sera from peach allergic patients grouped by symptoms (OAS-pool or SYS-pool), and used for screening of a random dodecapeptide phage display library. Positive clones were further confirmed by ELISA assays testing individual sera from each pool. Three-dimensional modelling allowed location of mimotopes based on analysis of electrostatic properties and solvent exposure of the Pru p 3 surface. Twenty-one phage clones were selected using Pru p 3-specific IgE, 9 of which were chosen using OAS-specific IgE while the other 12 were selected with systemic-specific IgE. Peptide alignments revealed consensus sequences for each pool: L37 R39 T40 P42 D43 R44 A46 P70 S76 P78 Y79 for OAS-IgE, and N35 N36 L37 R39 T40 D43 A46 S76177 P78 for systemic-IgE. These 2 consensus sequences were mapped on the same surface of Pru p 3, corresponding to the helix 2-loop-helix 3 region and part of the non-structured C-terminal coil. Thus, 2 relevant conformational IgE-binding regions of Pru p 3 were identified using a random peptide phage display library. Mimotopes can be used to study the interaction between allergens and IgE, and to accelerate the process to design new vaccines and new immunotherapy strategies.